报告题目:Critical mass for a two-species chemotaxis model with two chemicals
in R2
报 告 人:王金环教授 辽宁大学
报告时间:2020年6月18日 14:00-15:00
报告地点:腾讯会议 ID:688 340 177
或点击链接直接加入会议:
https://meeting.tencent.com/s/m5s8pm3T2S4S
校内联系人:刘长春 liucc@jlu.edu.cn
报告摘要:
In this paper, we study a two-species chemotaxis model with two
chemicals in R2. Let m1, m2 be the initial mass of the two species respectively.
The critical mass of the model is established as a curve of the form m1m2 -4p(
m1 +m2)= 0. That is to say the solutions exist globally if m1m2 -4p(m1 +m2)< 0, and the finite time blow-up of solutions may occur if m1m2 -4p(m1 +m2)> 0.
报告人简介:
王金环, 辽宁大学澳门新莆京游戏app教授,研究方向为非线性抛物及椭圆方程。辽宁省百千万人才“千层次”人才。2017年被评为辽宁大学杰出青年人物,2016年被评为辽宁大学巾帼建业先进个人,现已累计在SIAM J. Math. Anal., Nonlinearity,Nonlinear Anal. RWA,Discrete Contin. Dyn. Syst. Ser. B 等国际重要期刊发表论文20多篇。现主持和完成多项国家和省部级项目。